Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation.
نویسندگان
چکیده
We studied 15 riparian and upland Sonoran desert species to evaluate how the limitation of xylem pressure (Ψ(x)) by cavitation corresponded with plant distribution along a moisture gradient. Riparian species were obligate riparian trees (Fraxinus velutina, Populus fremontii, and Salix gooddingii), native shrubs (Baccharis spp.), and an exotic shrub (Tamarix ramosissima). Upland species were evergreen (Juniperus monosperma, Larrea tridentata), drought-deciduous (Ambrosia dumosa, Encelia farinosa, Fouquieria splendens, Cercidium microphyllum), and winter-deciduous (Acacia spp., Prosopis velutina) trees and shrubs. For each species, we measured the "vulnerability curve" of stem xylem, which shows the decrease in hydraulic conductance from cavitation as a function of Ψ(x) and the Ψ(crit) representing the pressure at complete loss of transport. We also measured minimum in situ Ψ(x)(Ψ(xmin)) during the summer drought. Species in desert upland sites were uniformly less vulnerable to cavitation and exhibited lower Ψ(xmin) than riparian species. Values of Ψ(crit) were correlated with minimum Ψ(x). Safety margins (Ψ(xmin)-Ψ(crit)) tended to increase with decreasing Ψ(xmin) and were small enough that the relatively vulnerable riparian species could not have conducted water at the Ψ(x) experienced in upland habitats (-4 to -10 MPa). Maintenance of positive safety margins in riparian and upland habitats was associated with minimal to no increase in stem cavitation during the summer drought. The absence of less vulnerable species from the riparian zone may have resulted in part from a weak but significant trade-off between decreasing vulnerability to cavitation and conducting efficiency. These data suggest that cavitation vulnerability limits plant distribution by defining maximum drought tolerance across habitats and influencing competitive ability of drought tolerant species in mesic habitats.
منابع مشابه
The vulnerability to freezing-induced xylem cavitation of Larrea tridentata (Zygophyllaceae) in the Chihuahuan desert.
The temperature dependence of freezing-induced xylem cavitation was studied in a Chihuahuan desert population of Larrea tridentata (Zygophyllaceae). Field measurements of wood temperature and xylem embolism were combined with anatomical studies and laboratory measurements of embolism in stem and root samples frozen under controlled conditions. Our laboratory experiments corroborated the previou...
متن کاملXylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates.
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of t...
متن کاملXylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species
doi: 10.1111/j.1399-3054.2006.00644.x Previous studies indicate that conifers are vulnerable to cavitation induced by drought but in many cases, not by freezing. Rarely have vulnerability to drought and freezing stress been studied together, even though both influence plant physiology and the abundance and distribution of plants in many regions of the world. We studied vulnerability to droughta...
متن کاملWhat plant hydraulics can tell us about responses to climate-change droughts.
Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regula...
متن کاملHabitat Use by Sonoran Desert Tortoises
The distribution of desert tortoises (Gopherus agassizii) spans a wide range of biotic and abiotic conditions in the southwestern United States and northwestern Mexico, with physical and behavioral differences distinguishing tortoises inhabiting the Mojave Desert from those inhabiting the Sonoran Desert. Relative to tortoise populations in the Mojave Desert, populations in the Sonoran Desert ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 87 9 شماره
صفحات -
تاریخ انتشار 2000